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Abstract
We discuss the renormalizability of the massless Thirring model in terms of the
causal fermion Green functions and correlation functions of left–right fermion
densities. We obtain the most general expressions for the causal two-point
Green function and correlation function of left–right fermion densities with
dynamical dimensions of fermion fields, parameterized by two parameters. The
region of variation of these parameters is constrained by the positive definiteness
of the norms of the wavefunctions of the states related to components of the
fermion vector current. We show that the dynamical dimensions of fermion
fields calculated for causal Green functions and correlation functions of left–
right fermion densities can be made equal. This implies the renormalizability of
the massless Thirring model in the sense that the ultraviolet cut-off dependence,
appearing in the causal fermion Green functions and correlation functions
of left–right fermion densities, can be removed by renormalization of the
wavefunction of the massless Thirring fermion fields only.

PACS numbers: 11.10.Gh, 11.10.Kk, 11.10.Lm, 11.30.Rd

1. Introduction

The massless Thirring model [1] is an exactly solvable quantum field theoretic model of
fermions with a non-trivial four-fermion interaction in (1+1)-dimensional spacetime defined
by the Lagrangian invariant under the chiral group UV(1) × UA(1):

LTh(x) = ψ̄(x)iγ µ∂µψ(x) − 1
2gψ̄(x)γ µψ(x)ψ̄(x)γµψ(x), (1.1)
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where ψ(x) is a massless Dirac fermion field and g is a dimensionless coupling constant that
can be both positive and negative.

A solution of the Thirring model assumes a development of a procedure for the calculation
of any correlation function [2–9]. As has been shown by Hagen [4] and Klaiber [5],
the correlation functions of massless Thirring fermion fields can be parameterized by one
arbitrary parameter. In Hagen’s notation this parameter is ξ . Below we show that the
correlation functions in the massless Thirring model can be parameterized by two parameters
(see appendix A). This confirms the results obtained by Harada et al [10] (see also [11, 12])
for the chiral Schwinger model. In our notation these parameters are ξ̄ and η̄. The region of
variation of these parameters is restricted by the condition for the norms of the wavefunctions
of the states related to the components of the fermion vector current to be positive (see
appendix B). For η̄ = 1 the parameter ξ̄ is equal to Hagen’s parameter ξ̄ = ξ . The parameters
ξ̄ and η̄ we use for the analysis of the non-perturbative renormalizability of the massless
Thirring model in the sense that a dependence of any correlation function on the ultraviolet
cut-off � can be removed by the renormalization of the wavefunction of Thirring fermion
fields only. We show that independence of any correlation function of an ultraviolet cut-off
exists only if the dynamical dimensions of Thirring fermion fields, calculated from different
correlation functions, are equal. We would like to remind that for the known solutions of the
massless Thirring model [2–9] the dynamical dimensions of massless Thirring fermion fields,
calculated from causal Green functions and left–right correlation functions, are different. The
existence of different dynamical dimensions of Thirring fermion fields obtained from different
correlation functions has been regarded by Jackiw as a problem of (1+1)-dimensional quantum
field theories [13].

The paper is organized as follows. In section 2 we define the generating functional of
correlation functions in the massless Thirring model. In section 3 we calculate the two-
point causal Green function and the dynamical dimension of massless Thirring fermion fields
dψ̄ψ(g), parameterized by two parameters ξ̄ and η̄. In section 4 we calculate the two-
point correlation function of the left–right fermion densities and the dynamical dimension
of massless Thirring fermion fields d(ψ̄ψ)2(g) in dependence on ξ̄ and η̄. We show that the
dynamical dimensions dψ̄ψ(g) and d(ψ̄ψ)2(g) can be made equal, d(ψ̄ψ)2(g) = dψ̄ψ(g). This
indicates that the massless Thirring model is renormalizable in the sense that the dependence
of the causal Green functions and correlation functions of left–right fermion densities on the
ultraviolet cut-off can be removed by the renormalization of the wavefunction of massless
Thirring fermion fields. In section 5 we corroborate the validity of this assertion within
the standard renormalization procedure [14]. In the Conclusion we discuss the obtained
results. In appendix A we show that the determinant Det(i∂̂ + Â), where Aµ is an external
vector field, can be parameterized by two parameters. For this aim we calculate the vacuum
expectation value of the vector current and show that the ambiguous parameterization of
the determinant Det(i∂̂ + Â) is fully caused by the regularization procedure [10–12]. In
appendix B we analyse the constraints on the parameters ξ̄ and η̄ imposed by the positive
definiteness of the norms of the wavefunctions of the states related to the components of
the vector fermion current. We show that the positive definiteness of these norms does not
prohibit the possibility for the dynamical dimensions of massless Thirring fermion fields to
be equal. According to the equivalence of the massive Thirring model to the sine-Gordon
model [15], the constraints on the parameters η̄ and ξ̄ together with the requirement of the
non-perturbative renormalizability of the massless Thirring model lead to the strongly coupled
sine-Gordon field with the coupling constant β2 ∼ 8π . A behaviour and renormalizability
of the sine-Gordon model for the coupling constants β2 ∼ 8π have been investigated
in [16].
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2. Generating functional of correlation functions

The generating functional of vacuum expectation values of products of massless Thirring
fermion fields, i.e. correlation functions, is defined by

ZTh[J, J̄ ] =
∫

DψDψ̄ exp i
∫

d2x

[
ψ̄(x)iγ µ∂µψ(x) − 1

2
gψ̄(x)γ µψ(x)ψ̄(x)

+ ψ̄(x)J (x) + J̄ (x)ψ(x)

]
. (2.1)

It can be represented also as follows:

ZTh[J, J̄ ] = exp

{
i

2
g

∫
d2x

δ

δAµ(x)

δ

δAµ(x)

}
Z

(0)
Th [A; J, J̄ ]|A=0, (2.2)

where we have denoted

Z
(0)
Th [A; J, J̄ ] =

∫
DψDψ̄ exp i

∫
d2x[ψ̄(x)iγ µ∂µψ(x) + ψ̄(x)γ µψ(x)Aµ(x)

+ ψ̄(x)J (x) + J̄ (x)ψ(x)]. (2.3)

The functional Z
(0)
Th [A; J, J̄ ] is a generating functional of vacuum expectation values of

products of massless fermion fields of the massless Schwinger model coupled to an external
vector field Aµ(x) [17]. The integration over fermion fields can be carried out explicitly and
we get

Z
(0)
Th [A; J, J̄ ] = Det(i∂̂ + Â) exp

{
i
∫∫

d2x d2yJ̄ (x)G(x, y)AJ (y)

}
, (2.4)

where G(x, y)A is a two-point causal fermion Green function obeying the equation

iγ µ

(
∂

∂xµ
− iAµ(x)

)
G(x, y)A = −δ(2)(x − y). (2.5)

As has been shown in appendix A, the functional determinant Det(i∂̂ +Â) can be parameterized
by two parameters

Det(i∂̂ + Â) = exp

{
i

2

∫∫
d2x d2yAµ(x)Dµν(x − y)Aν(y)

}
, (2.6)

where we have denoted

Dµν(x − y) = ξ̄

π
gµνδ(2)(x − y) − η̄

π

∂

∂xµ

∂

∂xν

�(x − y;µ). (2.7)

Here ξ̄ and η̄ are two parameters, gµν is the metric tensor and �(x − y;µ) is the causal
two-point Green function of a free massless (pseudo)scalar field

i�(x − y;µ) = 1

4π
�n[−µ2(x − y)2 + i0]. (2.8)

It obeys the equation �x �(x − y;µ) = δ(2)(x − y), where µ is an infrared cut-off.
The appearance of two parameters is caused by dependence of the calculation of the

determinant Det(i∂̂ + Â) on the regularization procedure [10–12]. In appendix B we find the
constraint on the region of variation of these parameters imposed by the positive definiteness
of the norms of the wavefunctions of the states related to the components of the fermion vector
current. The parameters ξ̄ and η̄ are related to Hagen’s parameter ξ as ξ̄ = ξ and η̄ = 1.
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The solution of equation (2.5) is equal to

G(x, y)A = G0(x − y) exp

{
−i(gαβ − εαβγ 5)

×
∫

d2z
∂

∂zα
[�(x − z;µ) − �(y − z;µ)]Aβ(z)

}
, (2.9)

where εαβ is the antisymmetric tensor defined by ε01 = 1 and G0(x − y) is the Green function
of a free massless fermion field

G0(x − y) = iγ µ ∂

∂xµ
�(x − y;µ) = 1

2π

γ µ(x − y)µ

(x − y)2 − i0
(2.10)

satisfying the equation iγ µ∂µG0(x − y) = −δ(2)(x − y).
Any correlation function of the massless Thirring fermion fields can be defined by

functional derivatives of the generating functional (2.1) and calculated in terms of the two-
point Green functions G(x, y)A and �(x − y;µ). Below we calculate the casual two-point
Green function G(x, y) and the correlation function C(x, y) of the left–right fermion densities
defined by

G(x, y) = i〈0|T(ψ(x)ψ̄(y))|0〉 = 1

i

δ

δJ̄ (x)

δ

δJ (y)
ZTh[J, J̄ ]|J=J̄=0,

C(x, y) = 〈0|T
(

ψ̄(x)

(
1 − γ 5

2

)
ψ(x)ψ̄(y)

(
1 + γ 5

2

)
ψ(y)

)
|0〉

= 1

i

δ

δJ (x)

(
1 − γ 5

2

)
1

i

δ

δJ̄ (x)

1

i

δ

δJ (y)

(
1 + γ 5

2

)
1

i

δ

δJ̄ (y)
ZTh[J, J̄ ]|J=J̄=0,

(2.11)

where T is the time-ordering operator. The main aim of the investigation of these correlation
functions is in the calculation of the dynamical dimensions of the massless Thirring fermion
fields and the analysis of the possibility of making them equal [13].

3. Two-point causal Green function G(x, y)

In terms of the generating functional (2.1) the two-point Green function G(x, y) is defined by

G(x, y) = 1

i

δ

δJ̄ (x)

δ

δJ (y)
ZTh[J, J̄ ]|J=J̄=0 = exp

{
i

2
g

∫
d2z

δ

δAµ(z)

δ

δAµ(z)

}

× exp

{
i

2

∫∫
d2z1 d2z2Aλ(z1)D

λϕ(z1 − z2)Aϕ(z2)

}
G(x, y)A|A=0. (3.1)

The calculation of the rhs of (3.1) reduces to the calculation of the path integral

G(x, y) = 1

2π

γ µ(x − y)µ

(x − y)2 − i0

∫
D2u exp

{
− i

2

∫
d2zuµ(z)uµ(z)

− i

2
g

∫∫
d2z1 d2z2uµ(z1)D

µν(z1 − z2)uν(z2) +
√

g(gαβ − εαβγ 5)

×
∫

d2z
∂

∂zα
[�(x − z;µ) − �(y − z;µ)]uβ(z)

}
. (3.2)

Symbolically the rhs of (3.2) can be written as

G(x, y) = 1

2π

γ µ(x − y)µ

(x − y)2 − i0

∫
D2u exp

{
− i

2
uµ(1 + gD)µνuν

+
√

g∂µ(�x − �y)uµ − √
gγ 5∂µ(�x − �y)ε

µνuν

}
. (3.3)
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The integration over u can be carried out by quadratic extension. This yields

G(x, y) = 1

2π

γ µ(x − y)µ

(x − y)2 − i0
exp

{
− i

2
g
(
∂x
µ�x − ∂y

µ�y

) (
1

1 + gD

)µν (
∂x
ν �x − ∂y

ν �y

)
+

i

2
g
(
∂x
µ�x − ∂y

µ�y

)
εµα

(
1

1 + gD

)
αβ

εβν
(
∂x
ν �x − ∂y

ν �y

)}
. (3.4)

For the subsequent calculation we have to construct the matrix (1 + gD)−1. The matrix
(1 + gD) has the following elements:

(1 + gD)µα(x, z) =
(

1 + ξ̄
g

π

)
gµαδ(2)(x − z) − η̄

g

π

∂

∂xµ

∂

∂xα

�(x − z;µ). (3.5)

We define the elements of the matrix (1 + gD)−1 as

((1 + gD)−1)αν(z, y) = Agανδ
(2)(z − y) + B

∂

∂zα

∂

∂zν
�(z − y;µ). (3.6)

The matrices (1 + gD) and (1 + gD)−1 should obey the condition∫
d2z(1 + gD)µα(x, z)((1 + gD)−1)αν(z, y) = gµ

ν δ(2)(x − y). (3.7)

This gives

((1 + gD)−1)αν(z, y) = gαν

1 + ξ̄
g

π

δ(2)(z − y)

+
g

π

η̄(
1 + ξ̄

g

π

)(
1 + (ξ̄ − η̄)

g

π

) ∂

∂zα

∂

∂zν
�(z − y;µ). (3.8)

Using (3.8) we obtain

− i

2
g
(
∂x
µ�x − ∂y

µ�y

)( 1

1 + gD

)µν(
∂x
ν �x − ∂y

ν �y

)
= g

1 + (ξ̄ − η̄)
g

π

[i�(0;µ) − i�(x − y;µ)],

+
i

2
g
(
∂x
µ�x − ∂y

µ�y

)
εµα

(
1

1 + gD

)
αβ

εβν
(
∂x
ν �x − ∂y

ν �y

)
= − g

1 + ξ̄
g

π

[i�(0;µ) − i�(x − y;µ)], (3.9)

where i�(0;µ) is equal to

i�(0;µ) = − 1

4π
�n

(
�2

µ2

)
. (3.10)

Thus, the two-point Green function reads

G(x, y) = 1

2π

γ µ(x − y)µ

(x − y)2 − i0
exp(4πdψ̄ψ(g)[i�(0;µ) − i�(x − y;µ)])

= −�2

2π

γ µ(x − y)µ

−�2(x − y)2 + i0
[−�2(x − y)2 + i0]−d(ψ̄ψ)(g)

= �G(dψ̄ψ(g);�x,�y), (3.11)

where dψ̄ψ(g) is a dynamical dimension of the Thirring fermion field defined by [13]

dψ̄ψ(g) = g2

4π2

η̄(
1 + ξ̄

g

π

)(
1 + (ξ̄ − η̄)

g

π

) . (3.12)

Now we are proceeding to the calculation of the correlation function C(x, y).
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4. Two-point correlation function C(x, y)

According to equation (2.11), the two-point correlation function C(x, y) of the left–right
fermion densities is defined by

C(x, y) = 1

i

δ

δJ (x)

(
1 − γ 5

2

)
1

i

δ

δJ̄ (x)

1

i

δ

δJ (y)

(
1 + γ 5

2

)
1

i

δ

δJ̄ (y)
ZTh[J, J̄ ]|J=J̄=0

= −exp

{
i

2
g

∫
d2z

δ

δAµ(z)

δ

δAµ(z)

}

× exp

{
i

2

∫∫
d2z1 d2z2Aλ(z1)D

λϕ(z1 − z2)Aϕ(z2)

}

× tr

{
G(y, x)A

(
1 − γ 5

2

)
G(x, y)A

(
1 + γ 5

2

)} ∣∣∣∣
A=0

. (4.1)

This reduces to the calculation of the path integral

C(x, y) = 1

4π2

1

(x − y)2 − i0

∫
D2u exp

{
− i

2
uµ(1 + gD)µνuν − 2

√
g∂µ(�x − �y)ε

µνuν

}

= 1

4π2

1

(x − y)2 − i0
exp

{
2ig

(
∂x
µ�x − ∂y

µ�y

)
εµα

(
1

1 + gD

)
αβ

εβν
(
∂x
ν �x − ∂y

ν �y

)}
.

(4.2)

The result is

C(x, y) = 1

4π2

1

(x − y)2 − i0
exp(8πd(ψ̄ψ)2 [i�(0;µ) − i�(x − y;µ)])

= − �2

4π2

1

−�2(x − y)2 + i0
[−�2(x − y)2 + i0]−2d

(ψ̄ψ)2

= �2C(d(ψ̄ψ)2(g);�x,�y). (4.3)

The dynamical dimension d(ψ̄ψ)2 is equal to

d(ψ̄ψ)2(g) = − g

2π

1

1 + ξ̄
g

π

. (4.4)

For ξ̄ and η̄, restricted only by the constraint caused by the positive definiteness of the norms
of the wavefunctions of the states related to the components of the fermion vector current (see
appendix B), the dynamical dimensions of the massless Thirring model, calculated for the
two-point causal Green function (3.12) and the correlation function of the left–right fermion
densities (4.4), are not equal. According to Jackiw [13], this is a problem of quantum field
theories in (1+1)-dimensional spacetime. However, equating d(ψ̄ψ)2(g) and dψ̄ψ(g) we get the
constraint on the parameter η̄

η̄ = 2π

g

(
1 + ξ̄

g

π

)
. (4.5)

As has been shown in appendix B, the constraint on the region of variation of parameters ξ̄ and
η̄, imposed by the positive definiteness of the norms of the wavefunctions of the states related
to the components of the vector current, does not prevent from the equality of dynamical
dimensions d(ψ̄ψ)2(g) = dψ̄ψ(g).

This indicates that the massless Thirring model is renormalizable. The dependence
on the ultraviolet cut-off � can be removed by the renormalization of the wavefunctions of
Thirring fermion fields for both the 2n-point Green functions G(x1, . . . , xn; y1, . . . , yn) and the
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2n-point correlation functions C(x1, . . . , xn; y1, . . . , yn) of the left–right fermion densities,
the cut-off dependent parts of which are proportional to (�2)−ndψ̄ψ (g) and (�2)−2nd

(ψ̄ψ)2 (g),
respectively. Such a dependence can be proved by direct calculations. The dynamical
dimension of the Thirring fermion fields is equal to dψ(g) = d(ψ̄ψ)2(g) defined by
equation (4.4). We have to emphasize that, according to Jackiw [13], the dynamical dimension
of the operator : ψ(x1) · · · ψ(xn)ψ̄(y1) · · · ψ̄(yn) :, where : · · · : stands for normal ordering,
should differ from 2ndψ(g). This means that the dynamical dimensions of the Thirring fermion
fields are nondistributive [13]. However, the nondistributive property of the dynamical
dimensions of the Thirring fermion fields does not influence the renormalizability of the
massless Thirring model.

5. Non-perturbative renormalization

According to the standard procedure of renormalization in quantum field theory [14] the
renormalizability of the massless Thirring model should be understood as a possibility of
removing all ultraviolet divergences by renormalization of the wavefunction of the massless
Thirring fermion field ψ(x) and the coupling constant g. The massless Thirring model does
not suffer from the infrared divergences. Indeed, the infrared limit µ → 0 leads to the selection
rules on the correlation functions and does not introduce divergences [6–9, 15].

Let us rewrite the Lagrangian (1.1) in terms of bare quantities

LTh(x) = ψ̄0(x)iγ µ∂µψ0(x) − 1
2g0ψ̄0(x)γ µψ0(x)ψ̄0(x)γµψ0(x), (5.1)

where ψ0(x), ψ̄0(x) are bare fermionic field operators and g0 is a bare coupling constant.
The renormalized Lagrangian L(x) of the massless Thirring model should then read [14]

LTh(x) = ψ̄(x)iγ µ∂µψ(x) − 1
2gψ̄(x)γ µψ(x)ψ̄(x)γµψ(x)

+ (Z2 − 1)ψ̄(x)iγ µ∂µψ(x) − 1
2g(Z1 − 1)ψ̄(x)γ µψ(x)ψ̄(x)γµψ(x)

= Z2ψ̄(x)iγ µ∂µψ(x) − 1
2gZ1ψ̄(x)γ µψ(x)ψ̄(x)γµψ(x), (5.2)

where Z1 and Z2 are the renormalization constants of the coupling constant and the
wavefunction of the fermion field.

The renormalized fermionic field operator ψ(x) and the coupling constant g are related
to bare quantities by the relations [14]

ψ0(x) = Z
1/2
2 ψ(x), g0 = Z1Z

−2
2 g. (5.3)

For the correlation functions of massless Thirring fermions the renormalizability of the
massless Thirring model means the possibility of replacing the ultraviolet cut-off � by a
finite scale M by means of the renormalization constants Z1 and Z2.

According to the general theory of renormalization [14], the renormalization constants
Z1 and Z2 depend on the renormalized quantities g, the infrared scale µ, the ultraviolet scale
� and the finite scale M. As has been shown above the Green functions and left–right fermion
density correlation functions do not depend on the infrared cut-off. Therefore, we can omit it.
This defines the renormalization constants as follows:

Z1 = Z1(g,M;�), Z2 = Z2(g,M;�). (5.4)

For the analysis of the feasibility of the replacement � → M it is convenient to introduce the
following notations:

G(0)(x1, . . . , xn; y1, . . . , yn) = �nG(0)(d(ψ̄ψ)(g0);�x1, . . . , �xn;�y1, . . . , �yn),
(5.5)

C(0)(x1, . . . , xn; y1, . . . , yn) = �2nC(0)(d(ψ̄ψ)2(g0);�x1, . . . , �xn;�y1, . . . , �yn).
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The transition to a finite scale M changes the functions (5.5) as follows:

G(0)(x1, . . . , xn; y1, . . . , yn) =
(

�

M

)−2nd(ψ̄ψ)(g)

×MnG(0)(d(ψ̄ψ)(g0);Mx1, . . . ,Mxn;My1, . . . ,Myn),
(5.6)

C(0)(x1, . . . , xn; y1, . . . , yn) =
(

�

M

)−4nd(ψ̄ψ)2 (g)

×M2nC(0)(d(ψ̄ψ)2(g0);Mx1, . . . ,Mxn;My1, . . . ,Myn).

The renormalized correlation functions are related to the bare ones by the relations [14]:

G(r)(x1, . . . , xn; y1, . . . , yn)

= Z−n
2 G(0)(x1, . . . , xn; y1, . . . , yn)

= Z−n
2

(
�

M

)−2nd(ψ̄ψ)(g)

MnG(0)(d(ψ̄ψ)

(
Z1Z

−2
2 g

);
×Mx1, . . . , Mxn;My1, . . . , Myn),

(5.7)
C(r)(x1, . . . , xn; y1, . . . , yn)

= Z−2n
2 C(0)(x1, . . . , xn; y1, . . . , yn)

= Z−2n
2

(
�

M

)−4nd
(ψ̄ψ)2 (g)

M2nC(0)(d(ψ̄ψ)2

(
Z1Z

−2
2 g

);
×Mx1, . . . , Mxn;My1, . . . , Myn).

Renormalizability demands the relations

G(r)(x1, . . . , xn; y1, . . . , yn) = MnG(r)(d(ψ̄ψ)(g);Mx1, . . . ,Mxn;My1, . . . ,Myn),
(5.8)

C(r)(x1, . . . , xn; y1, . . . , yn) = M2nC(r)(d(ψ̄ψ)2(g);Mx1, . . . ,Mxn;My1, . . . ,Myn),

which impose constraints on the dynamical dimensions and renormalization constants

d(ψ̄ψ)(g) = d(ψ̄ψ)

(
Z1Z

−2
2 g

)
, d(ψ̄ψ)2(g) = d(ψ̄ψ)2

(
Z1Z

−2
2 g

)
(5.9)

and

Z−1
2

(
�

M

)−2d(ψ̄ψ)(g)

= Z−1
2

(
�

M

)−2d(ψ̄ψ)2 (g)

= 1. (5.10)

The constraints (5.9) on the dynamical dimensions are fulfilled only if the renormalization
constants are related by

Z1 = Z2
2 . (5.11)

The important consequence of this relation is that the coupling constant g of the massless
Thirring model is unrenormalized, i.e.

g0 = g. (5.12)

The unrenormalizability of the coupling constant, g0 = g, is not a new result and it has been
obtained in [18] for the massive Thirring model.

The unrenormalizability of the coupling constant, g0 = g, also implies that the Gell-
Mann–Low β-function, defined by [14]

M
dg

dM
= β(g,M) (5.13)

should vanish, since g is equal to g0, which does not depend on M, i.e. β(g,M) = 0.
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The constraint (5.10) is fulfilled only for d(ψ̄ψ)(g) = d(ψ̄ψ)2(g). In this case the
dependence of the 2n-point causal Green functions and the 2n-point correlation functions
of left–right fermion densities on the ultraviolet cut-off � can be simultaneously removed by
renormalization of the wavefunction of the massless Thirring fermion fields. This means the
massless Thirring model is non-perturbative renormalizable.

6. Conclusion

We have found the most general expressions for the causal two-point Green function and
the two-point correlation function of left–right fermion densities with dynamical dimensions
parameterized by two parameters. The region of variation of these parameters is restricted
by the positive definiteness of the norms of the wavefunctions of the states related to the
components of the fermion vector current (see appendix B).

Our expressions incorporate those obtained by Hagen, Klaiber and within the path-integral
approach [4–9]. Indeed, for Hagen’s parameterization of the functional determinant with the
parameters ξ̄ = ξ and η̄ = 1 the dynamical dimensions dψ̄ψ(g) and d(ψ̄ψ)2(g) take the form

dψ̄ψ(g) = g2

2π2

1(
1 + ξ

g

π

)(
1 − η

g

π

) , d(ψ̄ψ)2(g) = − g

2π

1

1 + ξ
g

π

. (6.1)

For ξ = 1 and η = 0, since η = 1 − ξ [4], we get

dψ̄ψ(g) = g2

2π2

1

1 + g

π

, d(ψ̄ψ)2(g) = − g

2π

1

1 + g

π

. (6.2)

These are dynamical dimensions of the Green functions and correlation functions of left–right
fermion densities obtained by Klaiber [5] and within the path-integral approach [6–9].

We have shown that dynamical dimensions dψ̄ψ(g) and d(ψ̄ψ)2(g) can be made equal.
This fixes the parameter η̄ in terms of the parameter ξ̄ and gives the dynamical dimension of
the massless Thirring fermion fields equal to

dψ̄ψ(g) = d(ψ̄ψ)2(g) = dψ(g) = − g

2π

1

1 + ξ̄
g

π

. (6.3)

As has been pointed out by Jackiw [13], the inequality of dynamical dimensions of fermion
fields obtained from different correlation functions is the problem of (1+1)-dimensional
quantum field theories.

The equal dynamical dimensions (6.3) make the massless Thirring model renormalizable
in the sense that the dependence of correlation functions of Thirring fermion fields on the
ultraviolet cut-off can be removed by renormalization of the wavefunction of Thirring fermion
fields only. We have corroborated this assertion within the standard renormalization procedure.

The removal of divergences of the massless Thirring model by the renormalization of
the wavefunction of the Thirring fermion fields has been analysed by Marino and Swieca
[6] within the Mandelstam representation of massless Thirring fermion fields [19]. The
divergences of the correlation functions were mapped into electrostatic (self-interaction)
divergences of an associated system of point-like charges and removed by the renormalization
of the wavefunction.

The equality of the dynamical dimensions dψ̄ψ(g) and d(ψ̄ψ)2(g) is not suppressed by the
positive definiteness of the norms of the wavefunctions of the states related to the components
of the vector current. A positive definiteness of the norms of the wavefunctions of these states
imposes some constraints on the region of variation of the parameters ξ̄ and η̄, demanding the
parameter g(1 + ξ̄ q/π) to be negative, i.e. g(1 + ξ̄ q/π) < 0.
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From the constraint −g(1 + ξ̄g/π) > 0 there follows that the coupling constant β2 of the
sine-Gordon model is of order β2 ∼ 8π . A behaviour and renormalizability of the sine-Gordon
model for the coupling constants β2 ∼ 8π have been investigated in [16].

We would like to accentuate that the dynamical dimensions of the massless
Thirring fermion fields are nondistributive [13], but this property does not influence the
renormalizability of the massless Thirring model discussed above.
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Appendix A. On the parameterization of the functional determinant Det(i∂̂ + Â)

The result of the calculation of the functional determinant Det(i∂̂ + Â) is related to the vacuum
expectation value 〈jµ(x)〉 of the vector current jµ(x) = ψ̄(x)γ µψ(x). Using (2.4), the
vacuum expectation value of the vector current can be defined by

〈jµ(x)〉 = 1

i

δ

δAµ(x)
�nZ

(0)
th [A, J, J̄ ]|J̄=J=0

= 1

i

δ

δAµ(x)
�n Det(i∂̂ + Â) =

∫
d2yDµν(x − y)Aν(y), (A.1)

where Dµν(x − y) is given by (2.7) and parameterized by two parameters ξ̄ and η̄. Hence,
the calculation of the vacuum expectation value of the vector current should show how
many parameters one can use for the parameterization of the Green function Dµν(x − y),
or the functional determinant Det(i∂̂ + Â) as well. According to Hagen [4], 〈jµ(x)〉 can be
determined by

〈jµ(x)〉 = lim
y→x

tr

{
iG(x, y)Aγ µ exp i

∫ y

x

dzν(aAν(z) + bγ 5A5ν(z))

}
, (A.2)

where a and b are parameters and Aν
5(z) = −ενβAβ(z). The fermion Green function G(y, x)A

is given by (2.9). The requirement of covariance relates the parameters a and b. This provides
the parameterization of the functional determinant Det(i∂̂ + Â) by one parameter. In Hagen’s
notation this is the parameter ξ .

In order to show that the functional determinant Det(i∂̂ + Â) can be parameterized by two
parameters we propose to define the vacuum expectation value of the vector current (A.2) as
follows:

〈jµ(x)〉 = lim
y→x

tr

{
iG(x, y)Aγ µ exp i

∫ y

x

dzν

(
aAν(z) + bγ 5A5ν(z)

+ c

∫
d2t

∂

∂tν

∂

∂tβ
�(z − t;µ)Aβ(t) + dγ 5

∫
d2t

∂

∂tν

∂

∂tβ
�(z − t;µ)A5β(t)

)}
,

(A.3)

where c and d are additional parameters and �(z − t;µ) is determined by (2.8). Under the
gauge transformation Aν → A′

ν = Aν + ∂νφ the third term in (A.3) behaves like the first
one, whereas the fourth one is gauge invariant. The exponent of equation (A.3) has the most
general form constrained by dimensional considerations and gauge invariance.
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The vacuum expectation value of the vector current can be transcribed into the form

〈jµ(x)〉 = lim
y→x

i

2π

(x − y)ρ

(x − y)2 − i0
tr

{
γ ρ exp(−i(gαβ − εαβγ 5)

∫
d2z

∂

∂zα
[�(x − z;µ)

− �(y − z;µ)]Aβ(z))γ µ exp i
∫ y

x

dzν

(
aAν(z) + bγ 5A5ν(z)

+ c

∫
d2t

∂

∂tν

∂

∂tβ
�(z − t;µ)Aβ(t) + dγ 5

∫
d2t

∂

∂tν

∂

∂tβ
�(z − t;µ)A5β(t)

)}
.

(A.4)

For the calculation of the rhs of (A.4) we apply the spatial-point-slitting technique. We set
y0 = x0 and y1 = x1 ± ε, taking the limit ε → 0. This gives

〈jµ(x)〉 = lim
ε→0

i

2π

1

∓ε
tr

{
γ 1

[
1 ∓ iε(gαβ − εαβγ 5)

∂

∂x1

∂

∂xα

∫
d2z�(x − z;µ)Aβ(z)

]

× γ µ

[
1 ± iε

(
aA1(x) + bγ 5A51(x) + c

∫
d2t

∂

∂t1

∂

∂tβ
�(x − t;µ)Aβ(t)

+ dγ 5
∫

d2t
∂

∂t1

∂

∂tβ
�(x − t;µ)A5β(t)

)]}

= ∓ lim
ε→0

ig1µ

πε
+ lim

ε→0

i

2πε

[
iε(2g1µgαβ + 2ε1µεαβ)

∂

∂x1

∂

∂xα

∫
d2z�(x − z;µ)Aβ(z)

∓ iε

(
2ag1µA1(x) + 2bε1µA51(x) + 2cg1µ

∫
d2t

∂

∂t1

∂

∂tβ
�(x − t;µ)Aβ(t)

+ 2dε1µ

∫
d2t

∂

∂t1

∂

∂tβ
�(x − t;µ)A5β(t)

)]
. (A.5)

Taking the symmetric limit we get

〈jµ(x)〉 = 1

π

[
−(g1µgαβ + ε1µεαβ)

∂

∂x1

∂

∂xα

∫
d2z�(x − z;µ)Aβ(z)

+

(
ag1µA1(x) + bε1µA51(x) + cg1µ

∫
d2t

∂

∂t1

∂

∂tβ
�(x − t;µ)Aβ(t)

+ dε1µ

∫
d2t

∂

∂t1

∂

∂tβ
�(x − t;µ)A5β(t)

)]
. (A.6)

The components of the current are equal to

〈j 0(x)〉 = 1

π
εαβ ∂

∂x1

∂

∂xα

∫
d2z�(x − z;µ)Aβ(z)

− b

π
A51(x) − d

π

∫
d2t

∂

∂t1

∂

∂tβ
�(x − t;µ)A5β(t),

〈j 1(x)〉 = 1

π

∂

∂x1

∂

∂xα

∫
d2z�(x − z;µ)Aα(z)

− a

π
A1(x) − c

π

∫
d2t

∂

∂t1

∂

∂tβ
�(x − t;µ)Aβ(t). (A.7)
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Using A5µ = −εµνA
ν and ��(x−y;µ) = δ(2)(x−y) the zero component can be transcribed

into the form

〈j 0(x)〉 = 1

π

∂

∂x1

∂

∂x0

∫
d2z�(x − z;µ)A1(z) − 1

π

∂

∂x1

∂

∂x1

∫
d2z�(x − z;µ)A0(z)

+
b

π
A0(x) +

d

π

∫
d2t

∂

∂t1

∂

∂t0
�(x − t;µ)A1(t)

− d

π

∫
d2t

∂

∂t1

∂

∂t1
�(x − t;µ)A0(t)

= − 1

π

∂

∂x0

∂

∂xµ

∫
d2z �(x − z;µ)Aµ(z) +

d

π
A0(x)

+
b + 1

π
A0(x) − d

π

∫
d2t

∂

∂t0

∂

∂tµ
�(x − t;µ)Aµ(t)

= −1 + d

π

∂

∂x0

∂

∂xµ

∫
d2z �(x − z;µ)Aµ(z) +

b + d + 1

π
A0(x). (A.8)

Comparing the time component with the spatial one, given by

〈j 1(x)〉 = c − 1

π

∂

∂x1

∂

∂xµ

∫
d2z �(x − z;µ)Aµ(z) +

a

π
A1(x), (A.9)

we obtain that the covariance of the vacuum expectation value of the vector current takes place
for c = −d and b + d + 1 = a only.

Thus, the vacuum expectation value of the vector current is

〈jµ(x)〉 = ξ̄

π
Aµ(x) − η̄

π

∂

∂xµ

∂

∂xν

∫
d2z�(x − z;µ)Aν(z)

=
∫

d2yDµν(x − y)Aν(y), (A.10)

where η̄ and ξ̄ are parameters related to the parameters a, b, c and d as ξ̄ = a and η̄ = 1 − c.
The vacuum expectation value of the vector current, given by (A.10), supports the possibility
of parameterizing the functional determinant Det(i∂̂ + Â) as well as the Green function
Dµν(x − y) by two parameters (2.7).

Appendix B. Constraints on the parameters ξ̄ and η̄ from the norms of the
wavefunctions of the states related to the components of the vector current

The dependence of the functional determinant Det(i∂̂ + Â) on two parameters leads to the
dependence of the two-point correlation function 〈0|T(jµ(x)jν(y))|0〉 on these parameters.
Following Johnson [2], for the vacuum expectation value 〈0|T(jµ(x)jν(y))|0〉 we get

i〈0|T(jµ(x)jν(y))|0〉 = − η̄

π

1(
1 + ξ̄

g

π

)(
1 + (ξ̄ − η̄)

g

π

) ∂

∂xµ

∂

∂xν

�(x − y;µ)

+
η̄

π

1(
1 + ξ̄

g

π

)(
1 + (ξ̄ − η̄)

g

π

)gµ0gν0δ(2)(x − y). (B.1)

This gives the following expressions for the vacuum expectation values 〈0|j 0(x)j 0(y)|0〉 and
〈0|j 1(x)j 1(y)|0〉:
〈0|j 0(x)j 0(y)|0〉 = − η̄

π

1(
1 + ξ̄

g

π

)(
1 + (ξ̄ − η̄)

g

π

)(
∂

∂x1

)2

D(+)(x − y)

(B.2)

〈0|j 1(x)j 1(y)|0〉 = − η̄

π

1(
1 + ξ̄

g

π

)(
1 + (ξ̄ − η̄)

g

π

)(
∂

∂x1

)2

D(+)(x − y),
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where D(±)(x − y) are the Wightman functions given by

D(±)(x − y) =
∫

d2k

(2π)2
2πθ(k0)δ(k2) e∓ik·(x−y). (B.3)

We have taken into account that

�(x − y;µ) = iθ(x0 − y0)D(+)(x − y) + iθ(y0 − x0)D(−)(x − y). (B.4)

According to Wightman and Streater [20] and Coleman [21], we can define the wavefunctions
of the states as

|h; j 0〉 =
∫

d2x h(x)j 0(x)|0〉, |h; j 1〉 =
∫

d2x h(x)j 1(x)|0〉, (B.5)

where h(x) is the test function from the Schwartz class h(x) ∈ S(R2) [20].
The norms of the states (B.5) are equal to [20, 21]:

〈j 0;h|h; j 0〉 =
∫∫

d2x d2y h∗(x)〈0|j 0(x)j 0(y)|0〉h(y)

= η̄

π

1(
1 + ξ̄

g

π

)(
1 + (ξ̄ − η̄)

g

π

) ∫
d2k

(2π)2
2π(k0)2θ(k0)δ(k2)|h̃(k)|2, 〈j 1;h|h; j 1〉

= η̄

π

1(
1 + ξ̄

g

π

)(
1 + (ξ̄ − η̄)

g

π

) ∫∫
d2x d2y h∗(x)〈0|j 1(x)j 1(y)|0〉h(y)

= η̄

π

1(
1 + ξ̄

g

π

)(
1 + (ξ̄ − η̄)

g

π

) ∫
d2k

(2π)2
2π(k0)2θ(k0)δ(k2)|h̃(k)|2, (B.6)

where h̃(k) is the Fourier transform of the test function h(x). Since the norms of the states
(B.5) should be positive, we get the constraint

η̄

(
1 + ξ̄

g

π

)(
1 + (ξ̄ − η̄)

g

π

)
> 0. (B.7)

This assumes that η̄ 
= 0. For η̄, constrained by the requirement of the renormalizability of
the massless Thirring model (4.5), inequality (B.7) reduces to the form

−g

(
1 + ξ̄

g

π

)
> 0. (B.8)

This inequality is fulfilled for

g > 0, 1 + ξ̄
g

π
< 0, g < 0, 1 + ξ̄

g

π
> 0. (B.9)

Using the vacuum expectation value of the two-point correlation function of the vector currents
(B.1) we can calculate the equal-time commutator [j 0(x), j 1(y)]x0=y0 and the Schwinger term.
We get

[j 0(x), j 1(y)]x0=y0 = −ci
∂

∂x1
δ(x1 − y1)

= − η̄

π

1(
1 + ξ̄

g

π

)(
1 + (ξ̄ − η̄)

g

π

) i
∂

∂x1
δ(x1 − y1) (B.10)

with the Schwinger term c equal to

c = η̄

π

1(
1 + ξ̄

g

π

)(
1 + (ξ̄ − η̄)

g

π

) . (B.11)

Due to the constraint (B.7) it is always positive. For η̄ = 1 our expression (B.10) for the
equal-time commutator coincides with that obtained by Hagen [4].
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Using (B.10) we can analyse the Bjorken–Johnson–Low (BJL) limit for the Fourier
transform of the two-point correlation function of the vector currents [22, 23]. Following [23],
we consider the Fourier transform

Tµν(q) = i
∫

d2x eiq·x〈A|T(jµ(x)jν(0))|B〉, (B.12)

where q = (q0, q1) and |A〉 and |B〉 are quantum states [23]. In our case these are vacuum
states |A〉 = |B〉 = |0〉. This gives

Tµν(q) = i
∫

d2x eiq·x〈0|T(jµ(x)jν(0))|0〉. (B.13)

According to the BJL theorem [22, 23], in the limit q0 → ∞ the rhs of equation (B.12)
behaves as follows [23]:

Tµν(q) = − 1

q0

∫ +∞

−∞
dx1 e−iq1x1〈0|[jµ(0, x1), jν(0)]|0〉

− i

(q0)2

∫ +∞

−∞
dx1 e−iq1x1〈0|[∂0jµ(0, x1), jν(0)]|0〉 + O

(
1

(q0)3

)
(B.14)

For the time-space component of the two-point correlation function we get

T01(q
0, q1) = − 1

q0

∫ +∞

−∞
dx1 e−iq1x1〈0|[j0(0, x1), j1(0)]|0〉

− i

(q0)2

∫ +∞

−∞
dx1 e−iq1x1〈0|[∂0j0(0, x1), j1(0)]|0〉 + O

(
1

(q0)3

)
(B.15)

Using (B.10) for the BJL limit of T01(q
0, q1) we obtain

T01(q
0, q1) = q1

q0

η̄

π

1(
1 + ξ̄

g

π

)(
1 + (ξ̄ − η̄)

g

π

) + O

(
1

(q0)3

)
. (B.16)

For η̄ = 1 this reproduces the result which can be obtained using Hagen’s solution [4]. One
can show that due to conservation of the vector current the term proportional to 1

/
q2

0 vanishes.
The asymptotic behaviour of the Fourier transform of the two-point correlation function of the
vector currents places no additional constraints on the parameters ξ̄ and η̄.

Inequality (B.7) leads to the following interesting consequences. According to Coleman
[15], the coupling constant β2 of the sine-Gordon model is related to the coupling constant g

of the Thirring model as

β2

8π
= 1

2
+ d(ψ̄ψ)2(g) = 1

2

(
1 − g

π

1

1 + ξ̄
g

π

)
. (B.17)

Hence, for the constraint (B.9) the coupling constant β2 is of order β2 ∼ 8π . A behaviour and
renormalizability of the sine-Gordon model for the coupling constants β2 ∼ 8π have been
investigated in [16].
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